9

Real-time System Development
Methodologies — 2

In this chapter we will consider two further methodologies — MASCOT and
PAISLey. MASCOT is one of the older methodologies but it has recently
been extensively revised. It is interesting in that it assumes the system is being
designed for a particular virtual machine and that the implementation of ‘this
virtual machine on a specific computer or set of computers is a separate problem.
Hence at the design stage there is no need for consideration of specific
technologies.

PAISLey is primarily a specification technique which is based on formal
mathematics. Its most interesting features are: a means of specifying the timing
constraints of the system; and execution of the specification.

9.1 MASCOT

MASCOT was the first formal real-time software development methodology. The
first version of MASCOT was developed by Jackson and Simpson during the period
1971-5 (Jackson and Simpson, 1975). The official definition of MASCOT 1 was
published in 1978 and a revised version — MASCOT 2 — was issued in 1983. Between
1983 and 1987 extensive changes to the technique were made and the official
standard for MASCOT 3 was published in 1987.

The official handbook states that MASCOT is a Modular Approach to Software
Construction Operation and Test which incorporates:

e 2 means of design representation;

e a method of deriving the design;

® a way of constructing software so that it is consistent with the design;

e a means of executing the constructed software so that the design structure
remains visible at run-time; and

e facilities for testing the software in terms of the design structure.

353

354 Real-time System Development Methodologies — 2

9.2 BASIC FEATURES OF MASCOT

The application software is designed for a specific virtual machine and the problem
of mapping the MASCOT machine onto a real computer is treated as a separate
problem. In MASCOT software is represented as:

& a set of concurrent operations; and
® the flow of data between such operations.

The operations are referred to as components. The system consists of a set of
interconnected but independent components that make no direct reference to each
other. Each component has specific, user-defined, characteristics that determine
how it can be connected to other components. Components are created from
templates, that is patterns used to define the structure of the component,
Two classes of templates are fundamental to MASCOT: (a) activity and (b)
intercommunication data area — IDA.

An activity template is used to create one or more activity components each of
which is a single sequential program thread that can be independently scheduled. It
is assumed that at the implementation stage each activity will be mapped onto a
software task. Such a task may run on its own. processor or be scheduled by a run-
time system (usually referred to as the MASCOT kernel) to run on a processor
shared with other activities. The activities communicate through IDAs. The IDA
provides the necessary synchronisation and mutual exclusion facilities.

An [DA is a passive element with the sole purpose of servicing the data
communication needs of activity components. 1t can contain its own private
data areas. It provides procedures which activities use for the transfer of data.
Within an /DA, and only within an /DA, the designer has access to low-level
synchronisation procedures and thus is not limited to using high-leve! operations
such as monitors, message passing, or rendezvous, provided by the implementation
language, but is able to use any technique appropriate to the problem. A structure
containing activity components connected by means of one or more IDAs is
referred to as a network,

MASCOT supports three forms of IDA: a generalised 7DA; a channel; and a
pooi — their behaviour is defined as follows:

channel: supports communication between producers and consumers. It can
contain one or more items of information. Writing to a channel adds an item
without changing items already in it. The read operation is destructive — it
removes an item from the channel. A channel can become empty and also,
because its capacity is finite, it can become full,

poof: s typically used to represent a table or dictionary which activities
periodically consult-or update. The write operation on a pool is destructive
and the read operation is non-destructive.

Basic Features of MASCOT 355
9.2.1 Simple Example

MASCOT can be used at a simple level to provide a virtual machine supporting
activities, pools and channels. A design is constructed in the form of an activity,
pool and channel network — an ACP diagram — as is shown in Figure 9.1.

The diagram represents part of a system for the control of a plant. The activity
Heater1Input gets data from a plant interface. The data is held in a poo! Heaterlin
from where it is read by activity HeaterlAlarm and Heater1Con. The required
output to the plant and the alarm status are held in a pool Heater1Status. An activity
Heater1Report gets data from the pool holding status information and sends it via
a channel Heater1Ch to some other activity (not shown). Also not shown are the
activities required to pass the data to the plant control. This ACP differs from a
MASCOT 2 ACP since the components now contain ports and windows (shown as
solid circles and rectangles) the significance of which is explained below.

Once the ACP diagram has been produced, design of the templates for the

Heater1Ch

Heater | Input Heaterl Alarm

HeateriReport

Heater1Con

Heater1Status

Heaterlin

gwl awi gw2 pw2 gwi

TempData status

Figure 9.1 An example of 3 MASCOT ACP diagram.

356 Real-time System Development Methodologies — 2

individual components can proceed. Many component templates will be reusable
and hence only application-specific ones will need to be designed. Instances of the
component are created when the network is constructed by transiating the ACP
diagram to textual form and entering it into the MASCOT database.

At this level a design in MASCOT may be represented in either graphical (ACP
diagram) or textual form. Both forms are equivalent and may be derived from each
other. The textual form stored in the database can be progressively updated as the
design proceeds.

9.2.2 Communication Methods

Entities in MASCOT communicate by means of parhs. A path connection is made
between a port and a window. A port is represented by a solid circle and a window
by a solid rectangle. Thus in Figure 9.1 activity Input has a port gp3 and is connected
by a path labelled put 3 to a window gw3 in an IDA TempData. In path put 3 the
port is the source of the data and the window is the sink. However, a port can act
as a sink and a window as a source as is the case with path get 1.

Windows are passive devices which provide a set of operations for use by an
active device for the transmission of data. Ports are active devices which specify a
set of operations required to transmit data. Windows are normally found in
communication components whereas ports are found in both activities and
communication components, (The use of ports in communication components
enables IDAs to be connected together.)

9.3 GENERAL DESIGN APPROACH

The general approach to the design of the system is hierarchical:

I. Define system and external devices.

2. Decompose system into a network of concurrent subsystems, 1DAs and
hardware interface units — servers.

3. Continue decomposition of subsystems until further decomposition is not
desirable. At this point — the component level — a particular subsystem will
be composed of activities and [DAs.

Figure 9.2 shows the top-level network diagram for the Drying Oven which was used
as an example in the previous chapter. Two subsystems — ControlAreaTemp-and
GeneralOvenControl - are used and they connect to the external devices through
servers. The connection to the Temperature transducer is through the server TT
which uses a path fetch to connect from window TT.W in the server to port P1 in
the subsystem.

General Design Approach

357

(’

OvenControl w

TT)

fetch ControlArea HU
Temperature o etc Temp Heater
transducer — — - — units

Pl p2 send
ControlA
- Cs P3 cM
Conveyor Conveyor

“ speed -1- g U g motor
SENSOr LogB control

Pl Wlpy oL
Oven p4 ControlB = || Guard

status T P3 LogB lock
GeneralOven '
Control
w |OK w (OD
Kybd VDU
: \
! |
Operator Operator
keyboard display

Figure 9.2 Drying aven — MASCOT network level.

Figure 9.3 shows subsystem ControlAreaTemp decomposed to the component
level. There are two activities Actl and Act2 which are named ReadTemp and
Control respectively. The names inside the circles are the template names and those
outside are the component names. A component is an instantiation of a template.
ReadTemp is assumed to read the value ControlOn by using the access procedure
get and if it is true it reads Temp and uses send to store the value in a pool
AreaTemp. Control gets the value of the temperature from AreaTemp and
calculates the heat output.

An activity represents a task and cannot be subdivided into smaller, separately
schedulable units (they would themselves be activities) but it can be divided into
smaller modules as shown in Figure 9.4. One module within the activity is defined
as the root component, that is the main module, and it provides coding for the initial

358 Real-time System Development Methadologies — 2

4 ™

ControlAreaTemp

Control

Heat

ReadTemp fetchHeat

fetch

ControlOn

wl w2
ComSiore

AreaTemp

_ - J

Figure 9.3 Subsystem - ControlAreaTemp.

entry and calls on the services provided by the other units which are known as
subroois. :

Subroots usually comprise a collection of procedures and can be designed using
the standard structured methods. Thus in the example shown in Figure 9.4 the main
root M calls CheckTemp which gets the AreaTemp from the pool (see Figure 9.3)
and checks to see if it is within the normal range. If it is not within the normal range
MaxControl (subroot SR3) is called, otherwise PIDControl (subroot SR2} is called.
Finally subroot SR4 which outputs the heat demand is catled.

There are two general comments to make about this example. One is that the
design procedures in MASCOT assume that a general set of templates will be created
and used; thus all entities are created from generic types by a process of
instantiation, and hence even if only one instance is required a template has to be
created and then instantiated. This is i fact less cumbersome than it seems. The
advantages are.obvious even in this small system: subsystem ControlAreaTemp is
a template and three instances can be created to deal with the PreHeat, Drying and
Cooling areas of the oven. One of the purposes of this approach is to encourage the
reuse of software,

The second comment is that although the subsystem ControlAreaTemp contains
two activities that are run at periodic intervals this is not shown on the design

Textual Representations of MASCOT Designs 359

/ Act2 ControlTemperature \

Controller

CheckTemp P1DControl MaxControl

N J

Figure 9.4 Diagram showing activities in ControlTemperature.

diagrams. The scheduling support is provided by the MASCOT kernel and the
information is entered when the activities are made known to the kernel.

9.4 TEXTUAL REPRESENTATIONS OF MASCOT DESIGNS

In MASCOT there is a direct correspondence between the diagrams and their textual
representation; in fact the text is the formal description of the system, not the
diagrams. The description of the system shown in Figure 9.2 takes the form

SYSTEM OvenControl;
{specification part goes herel
USES ControlA, ControlB, ADC, DAC, Pulse,
LogA, LogB, Kybd, YDU;
SUBSYSTEM ControlAreaTemp:ControlA{p1=TT.w,
p2=HU.w, p3=ControlB.wl);
SUBSYSTEM Generalfontrol:ControlB(p1=CS.w,
p2=CM.w,p3=GL.w, p4=0S5.uw, p5=0K.w, p6=0D.w);
END;
END.

360 Real-time System Development Methadologies — 2

The words in upper case are MASCOT key words. Each textual unit or module
follows a similar pattern: it has associated with it an explicit class (in this case
SYSTEM); a name part (OvenControl);a specification part (in this case empty):
and, for a template, an implementation part (in this case the statements between
USES and END). The USES statement lists the template names used to form
components and is immediately followed by a list of the components, each preceded
by its generic form (in this case SUBSYSTEM) and followed by its template name
and, in parentheses, a list of connectors.

The lines connecting subsystems to the servers are paths. They represent data
flow between a port of one component and the window of another. The procedures
read and write would be available at windows TT.w and HU.w respectively. The
coding for the two procedures would be included in the module for the servers ADC
and DAC respectively. The outline for server ADC FT takes the form:

SERVER TT;
PROVIDES w: fetch;

ACCESS PROCEDURE read (VAR item:PlantData);
{body of procedure }
END;

END.

A server is the only MASCOT design entity which is permitted to communicate with
a device. It has all the features of an IDA but also is allowed to contain one or more
handlers which can be invoked by hardware interrupts. It thus provides the means
for low-level direct communication with the system hardware.

The identifier used to label a path indicates its type which is defined in a module
called an access interfuce. Consider the subsystem ControlAreaTemp shown
in Figure 9.3: the path connecting port pi in activity Control 1o the window w2
in IDA AreaTemp is of tvpe fefch and the path connecting port ReadTemp.p2
to window AreaTemp.wl is of type send. The modules defining them take the
form

ACCESS INTERFACE send;

WITH PlantbData;

PROCEDURE write(item: PlantData);
END.

ACCESS INTERFACE fetch;
WITH PlantData; ‘
PROCEDURE read(VAR item:PlantData);
END.

The WITH clause used in the specification indicates that the type definition
PlantData is heid in a common source accessible to all modules. The declaration

Textual Representations of MASCOT Designs 361
is made in a specification statement, for example

DEFINITION PlantData;
TYPE
PlantData = RECORD
{put definitian here}l
END {RECORDY};
END.

The textual description of the composite activity shown in Figure 9.3 takes the form

ACTIVITY ControlTemp;
{specification part}
REQUIRES pl:fetch;

p2:send;

USES M, SR1, SR2, SR3, SR&4;

ROOT Controller: M

SUBROOT CheckTemp: SR1(p1=p1);

SUBROOT PIDControl: SRZ;

SUBROOT MaxControl: SR3;

SUBROOT Output: SR&4(pl=p2);
END.

The templates for the root and subroots are defined as follows:

ROCGT main;

NEEDS st:sl?l;
s2:512;
s3:sl3;
s4hisléh;

{code goes herel
END.

The NEEDS section specifies the links connecting the root module to the other
components. As shown below the corresponding subroot will name the links in a
GIVES statement. For example the subroot SR1 takes the form

SUBROOT SR1;
s REQUIRES pl1:fetch;
GIVES sl1;
{coding goes herel
END. .

362 - Real-time System Development Methodologies — 2

9.5 OTHER FEATURES OF MASCOT

9.5.1 Constants

The usefulness of the template method of creating components is enhanced by the
facility to create from the same template components which differ in minor ways.
In the specification of a template dummy constants are declared; their actual
value is supplied when a component is created. The dummy constants are known
astemplate constants. They can be considered to be the equivalent of dummy
arguments in a macro declaration. For example, they permit servers with different
device addresses and different interrupt levels to be created from a single template;
or they can enable components with different buffer sizes or different iteration
counts to be created.

9.5.2 Direct Data Visibility

In most real-time applications certain functions cannot be satisfactorily performed
if the designer is restricted to using the data hiding approach provided by the IDA
construct of MASCOT. A typical example is a module providing direct feedback
control subjected to a hard time constraint. If a module of this type requires access
to external data, for example in order to update controller parameters, it must have
guaranteed access at all times and must not be kept waiting because another module
is accessing the data. There are a variety of solutions to this problem; one is to allow
the module to access the data directly without using the standard access procedures.
MASCOT provides the designer with a means of providing direct access through a
construct called an access interface.

9.5.3 Qualifiers

Software design techniques and implementation languages impose certain general
constraints on what can and cannot be done. However, in most software systems
there are areas in which the designer would wish either to relax the constraints or
to impose locally more stringent constraints. For these purposes MASCOT provides
a set of qualifiers which can be used to modify the behaviour of parts of the system.

1. Connectivity constraints: in the default mode windows are open (o one or
more ports; qualifiers can be used to restrict access to a single port, or to
allow a window to exist without a port connection (used normally for test
purposes).

2. Data access constraints: can be used to limit variables made directly
accessible via an access interface.

3. Data flow: permits the direction of data flow to be shown in the textual
form of the design.

Development Facilities 363

4. Context qualifiers: provide a means of restricting certain functions provided
by the support environment to particular types of template, for example
certain low-level functions may be restricted to servers.

5. Code generation constraints: allow the designer to force the compiler to
generate in-line code for an access procedure to a data area and hence avoid
the overheads in making a procedural call.

9.6 DEVELOPMENT FACILITIES

As has already been mentioned the MASCOT design is captured by entering data
relating to the design in textual form into a database. The method of constructing
textual modules and the database have been designed so as to enable a design to be
built up incrementally. As information is added, either in the form of a new module,
or as an addition to an existing module, checks ar¢ made on the validity of the
information. For example, the first stage is to register a module and for this process
to be successful the name part must be defined and legal, and no module with the
same name must have been previously registered. The various stages are listed in
Table 9.1.

Table 9.1 MASCOT status conditions (reproduced from The Qfficial Handbook of

MASCOT
Operation Status to be Module class Preconditions
achieved
Register Registered All Name part defined and legal
No other module with same name
Introduce Partially All Registered preconditions satistied
introduced Specification dependencies registered
Specification part defined and fegal
Fully introduced All Partially introduced preconditions satisfied
Specification dependencies fully introduced
Enrol Partially Composite Partially introduced preconditions satisfied
enrolled templates Implementation dependencies introduced
Implementation part defined and legal
Fully enrolled Simple Fully introduced preconditions satisfied
template Implementation dependencies fully
introduced

Implementation part defined and legal

Composite Partially enrolled preconditions satisfied
templates implementation dependencies fully enrolled

364 Real-time System Development Methodologies — 2

The progress status of each module in the design can be listed. The database
thus provides management and designers with a support environment for project
development.

9.7 THE MASCOT KERNEL

The MASCOT design procedures are based on the assumption that the design will
be implemented using the features provided by a piece of software known as a
MASCOT kernel. The implementation of this software on a particular computer
using a particular operating system is considered to be a separate issue outside the
application development. It is useful for an understanding of the MASCOT
methodology to be aware of the main features of the kernel, which represents a
virtual machine on which the MASCOT application will run.

Scheduling: th: kernel must allocate processor time to the parallel activities that
constitute a MASCOT system. It must provide a real-time clock and must
support primitive synchronisation procedures. The synchronisation pro-
cedures are precisely defined and are similar to semaphores and signals,

Interrupt handfing: the kernel must support the handling of hardware
interrupts.

Subsystem controf: a MASCOT design may include groups of activities (tasks)
which form a subsystem. The kernel must provide a means of adding and
removing such subsystems from the attention of the scheduler,

Monitoring: the kernel must provide a comprehensive set of facilities to aid
testing and optimisation of the implementation.

In MASCOT 2 the exact structure of the support required was mandatory. The
specific schemes for synchronisation, device handling, interrupts, process scheduling
and priorities are analysed and a comparison with alternatives is given in Sears and
Middieditch (1985). If the language being used in the implementation supports
concurrency then the designer should consider mapping activities onto the
appropriate language feature. Budgen (1985) describes a Modula-2 implementation
of the MASCOT kernel. MASCOT 2 imposes one restriction: activities should not
be created dynamically; the svstem network (activities, IDAs and servers) must
remain invariant at run-time. The designer must document how the language
features have been used to support the MASCOT virtual machine.

In MASCOT 3 the specific form of the kernel is not mandatory; it is only a
recommendation and the implementer can provide the support in any appropriate
way. MASCOT 3, however, requires the virtual machine to support additional
features. For example, an activity providing direct feedback control that has a hard
time constraint may require access to external data in order to update controller
parameters. To meet its time constraint it must have guaranteed access at all times

Summary of MASCOT 365

and must not be kept waiting because another activity is accessing the data. A
simple solution to this problem is to allow the module to access the data directly
without using the standard access procedures. MASCOT provides for this
through a construct called an access interface that must be supported by the
kernel.

9.8 SUMMARY OF MASCOT

Although MASCOT is not widely used — its use has largely been for military
applications within the UK - it has been dealt with at some length because it
demonstrates some valuable ideas and features. Some of the more important are
considered below.

Templates: the template construct encourages the reuse of software
components, which contributes to increased reliability. Templates are generic
entities and the hierarchical structure of systems, subsystems and activities
lends itself to the development of knowledge-based support tools based on
using the frame paradigm for the representation of knowledge (Bennett,
1992).

Encapsulation: entities in MASCOT have many of the features of objects in
that the method forces the designer to encapsulate procedures for accessing
data within communication units (IDAs) and to adopt message passing as a
major means of communication between activities. So although MASCOT
does not claim to be an object-oriented design method it contains many of
the features of such methods.

Virtual machine: MASCOT systems are designed for a specific virtual machine,
the MASCOT kernel. This has several advantages: the designer becomes
familiar with the characteristics of the machine on which the system is to run;
portability of designs is enhanced as the designer cannot utilise the
peculiarities of one specific operating system or type of hardware; there is a
clear separation of application design from system implementation. The
disadvantage of the approach is the possibility of a less efficient
implementation.

MASCOT 3 provides an excellent design methodology. It is sufficiently rich in
concepts to provide design flexibility but has sufficient constraints for creating safe
and reliable software. The introduction of hierarchical structures and the support
for the generation of networks has overcome the limitations of MASCOT 2.
However, the diagrams used in MASCOT 3 are much more complex to draw than
those of the previous version and it is therefore more difficult to use the method
quickly to sketch out ideas by hand. CASE tool support for both manipulating the
diagrams and handling the textual representation is essential.

366 Real-time System Development Methodologies — 2
9.9 FORMAL METHODS

One of the features of MASCOT (and also of HOOD) is the way in which diagrams
used as the basic design clement are formalised by the use of textual equivalents,
The textual form of the diagram is then successively elaborated to form the code
for the system the diagram represents. Through the use of CASE tools conformity
of the diagrams and textual representation to the rules can be checked and
consistency can be enforced, as can the transformations between various
representations. The weakness lies in showing that the design conforms to the
specification and this issue is not addressed in MASCOT.

The aim of formal software engineering methods is to be able to transform a
formal specification into implementation code and to be able to prove that each
transformation step is correct. A first requirement for doing this is that the
specification should be expressed in a formal (mathematical) language. There are a
growing number of formal specification languages. Cooling (1991, p. 203) has listed
the main ones as:

Model! based Axiom based
VDM (Vienna Development Method) LARCH

Z ACT-ONE
INA-JO OBJ

me 100 CLEAR

The most widely used of the model-based methods are VDM and Z and attempts
have been made to use these for the specification of real-time systems. However, as
vet they contain no facilities for specifying timing or concurrency. Cooling (1991,
Chapter 7) gives a simple and brief introduction to the basic ideas of formal
specification languages. There is one formal specification method that was
developed specifically for real-time systems, namely PAISLey.

9.10 THE PAISLEY SYSTEM FOR REAL-TIME SOFTWARE
DEVELOPMENT METHOD

PAISLey (Process-oriented, Applicative and Interpretable (executable) Specifi-
cation Language) has been developed by Pamela Zave at the University of Maryland
and the Bell Laboratories of AT & T. The specification is developed in terms of an
explicit model of the environment interacting with an explicit mode] of the proposed
system. Both the environment and the proposed systern are modelled as a set of
‘asynchronous interacting digital processes’. Non-digital objects in both the
environment and the proposed system are modelled as discrete simulations of the
object.

The PAISLey System for Rea!-ﬁme Software Development Method 367

The behaviour of the asynchronous processes {which will be referred to as
processes OF process in the following sections) is described in a formal
language. The language statements are executable and an interpreter is provided as
part of the system. It is the intention (not yet achieved) that implementation code
should be generated by applying formal transformation rules to the specification.
The languzge is based on two well-established models of computing, asynchronous
processes and functional programming, which have been merged. In deing so most
of the benefits of each model have been preserved.

A system is specified in PAISLey as a set of processes that continually cycle
through a set of state changes. The interval between the state changes is referred to
as the process step; computations to be performed at each step are specified using
a functional notation and each can be considered as a mapping of an input set of
values to an output set of values. In order to restrict side-effects mappings should
not use variables or assignment statements. Processes communicate by means of
precisely defined, interprocess communication protocols.

9.10.1 A Simple System

Figure 9.5 shows a simple system module which contains two processes — machine
and monitor. Information passes between processes by means of channels. A
process is considered to be a finite state machine and its behaviour can be specified
by defining:

1. a state space — that is, declaring a set of all possible states of the process
(note that this is not the ‘state space’ of linear control but represents the
set of discrete states of the system); and

2. a ‘successor’ function that defines the transition from the
current state to the next_state.

Thus if x is a member of the set X defined as X = {xi...xn) where nis finite, then
x(1 + 5) = succ {x(1)], where s is the finite interval of time required to compute the
function ‘succ’. The time 5 is referred to as the process step and is related to one
basic cycle of the proposed activity {process) within the system,

Stage 1 of building the specification is to define the system structure:

(machine-cycle [initial-machine-statel, monitor-
cycLe[initial—machine—image]);

SENsSor

actuator

Figure 9.5 The process structure for a trivial process control system.

368 Real-time System Development Methodologies — 2

This states that the system is composed of two processes and that their successor
mappings are machine-cyc le and moni tor-cycle, and their initial states are
the values of initial-machine-state and initial-machine-image
respectively. The set of values that can be taken by the initial states are defined by
the statements

initial-machine-state: --> MACHINE-STATE;
"MACHINE-STATE should be defined as the set of all
possible states of this process."

initial-machine~image: --> MACHINE-IMAGE:;
"MACHINE-IMAGE shouid be defined as the set of all
possible states of this process, capable of retaining
whatever historical information is required.”

The inverted commas are used to indicate a comment.
The next stage is to define each of the processes:

machine-cycle: MACHINE~STATE --> MACHINE-STATE;
machine-cycle: 1 -->=0.1 s5;

These two statements indicate that at each mach i ne-cycle there is a mapping
from one value in the set MACHINE-STATE to another, and that each machine-
cycle takes exactly 0.1 s. The actual function evaluated to get the new value is
given by

machine-cyclelstatel
proj[(1,(simulate-,machine[(state,accept—feedback-if—
any[Nulll)],

offer-sensor-datalsenselstate)]

1;

These statements indicate that each evaluation of machine-cycle includes the
paraliel evaluation of two expressions, one to compute another step of the discrete
simulation algorithm and one to offer the most recent sensor data to the monitor.
The value of the first expression becomes the next state of the process, while the
value of the second is thrown away.

The system described in Figure 9.5 exchanges data between the processes by
channels named sensor and actuator. Channels are specified by Exchange
Functions which are described below. The statements describing this part of the
specification for the machine process are

accept~feedback-if-any: FILLER ~~> FILLER U ACTUATOR-
SIGNAL;

accept-feedback-if~anylnull] = xr-actuator(nutl);
simulate-machine: .
MACHINE~STATE x (ACTUATOR-SIGNAL U FILLER) —-=> MACHINE-
STATE:

sense: MACHINE-STATE --> SENSOR-DATA:
offer-sensor-data: SENSOR-DATA ~-> SENSOR-DATA U FILLER;

The PAISLey System for Real-time Software Development Method 369

The full PAISLey specification of this simple system with comments is given in
Figure 9.6.

{machine-cycle [initial-machine-statel, monitor-cyclelinitial-
machine-imagel1l};

"The system is composed of two processes. Their successor mappings
are machine-cycle and monitor-cycle, and their initial states are
thevalues of initial-machine-state and initial-machine-image
respectively."

- *

initial-machine-state: -—-> MACHINE-STATE;

"MACHINE-STATE should be defined as the set of all possible states
of this process.”

machine~cycle: MACHINE-STATE —--> MACHINE-STATE;

machine-cycle: 1 -->=0.1s;

“wEach evaluation of machine-cycle takes exactly 0.1 second."”
machine-cyclelstatel
proi((1,(simulate-,machine[(state,accept-feedback'—if-
any[Nulll)],

offer-sensor-datalsenselstatel]

3)¥1:

“Each evaluation of machine-cycle includes the parallel
evaluationof two expressions, one to compute another step of the
discrete simulation algorithm and one to offer the most recent
sensor data to the monitor. The vatue of the first expression
becomes the next state of the process, while the value of the
second is thrown away."

accept-feedback-if-any: FILLER --> FILLER U ACTUATOR-SIGNAL;
accept-feedback-if-anylnulll = xr-actuatorlnulll;
naccept-feedback-if-any is defined as a norwaiting interactionon
the actuator channel. 1f no interaction takes place the value
Null will be returned."

simulate-machine:

MACHINE-STATE x (ACTUATOR-SIGNAL UFILLER) --> MACKINE-STATE;
“This mapping should be defined as one step of the discrete
simulation algorithm." _

sense: MACHINE-STATE --> SENSCOR-DATA;

"This mapping should be defined to simulate the physical senseor
attached to the machine."

offer~sensor-data: SENSOR-DATA --5 SENSOR-DATA U FILLER;
offer-sensor-datalfdatal = xr-sensorfdatal;

“sffer-sensor-data is defined as a nonwaiting interaction an the
sensor channel.”

Figure 9.6 The PAISLey specification listing for the trivial process control system
{continued overleaf).

370 Real-time System Devefopment Methodologies ~ 2

initial-machine-image: --> MACHINE-IMAGE;

"MACHINE-IMAGE should be defined as the set of all possible states
of this process, capable of retaining whatever historical
information is required."

monitor-cycle: MACHINE-IMAGE --> MACHINE-IMAGE;

monitor-cycle: 1 --> <= 2.0 s;

"Each evaluation of monitor-cycle must take less than or equal to
two seconds.”

monitor-cyclelimagel = process-sensor-datal(image,get-sensor-
datalNulll)l; -

""Each evaluation of monitor-cycle consists of getting the most
recent sensor data and then processing it."

get-sensor-data: FILLER --> SENSOR-DATA;

get-sensor-datalnull] = x-sensorlnull];

"get-sensor-data is defined as a waiting interaction on the sensor
cthannel. Its value is the most recent sensor data."
process-sensor-data: MACHINE-IMAGE x SENSOR-DATA --> MACHMINE~
IMAGE; i
process-sensor-datal(image,data)] =
proj[(1,(maintain—machine-image[(image,data)],
give-feedback-if-needed
[check-machine—condit'ion[(image,data)]]

1Y1;

"Each evaluation of process-sensor data includes the parallel
evaluation of two expressions, one to incorporate the most recent
sensor data into the historical information being saved in the
process, and one to provide feedback to the machine if it is
needed., The value of the first expression becomes the next state of
the process, while the value of the second is thrown away.”
maintain-machine-image:

MACHINE-IMAGE X SENSOR-DATA -—> MACHINE-IMAGE;

"This mapping should be defined to save the most recent sensor
data."

check-machine-condition:

MACHINE-IMAGE X SENSOR-DATA --> { No-Problem } U ACTUATOR-SIGNAL;
"This mapping should be defined to decide whether feedback is
needed and if so what the actuator signal should be."
give-feedback-if-needed: { No-Problem } U ACTUATOR-SIGNAL -->
FILLER;

give-feedback-if-neededisignall =
fequall(signal,No~Problem)]; Null,

True :give-feedbackisignall

fi

give-feedback: ACTUATOR-SIGNAL --> FILLER;
give-feedback({signall = x-actuator{signall;

"give-feedback is defined as a waiting interaction on the actuator
channel .

Figure 9.6 continued

The PAISLey System for Reai-time Software Development Method 371
9.10.2 Exchange Functions

Processes interact by sending and receiving data through channels. The behaviour
of a channel is defined by an exchange function. Three primitive exchange functions
referred 1o as x, xm and xr are defined. The syntax of the exchange function is

<function type> - <channelname> [argument!

for example x-msgly]l defines a channel of type x with the name msg and
argument y. The argument provides an iterm to be sent and returns an item received,
The function types are:

x: matches (synchronises) with a pending exchange function on its channel. If
no exchange function is pending then it waits. If several requests are pending
they are satisfied on a non-deterministic basis.

xm: behaves like an x-type exchange function except that two xm functions on
the same channel cannot match with each other.

xr: behaves like an x-type except that it will not wait, If an xr exchange
function cannot find an immediate match it will terminate and return its own
argument value.

9.10.3 Timing Constraints

PAISLey supports the insertion of timing constraints into the specification. These
are inserted as formal statements in the language; for example, the statement

machine-cycle ; 1 =0.1s;
specifies a cyclic operation with a repetition time of exactly 0.1 s. The statement
monitor-cycle: t <=2.0s

specifies that monitor_cycle must compute its successor function within a time
period of less than or equal to 2 seconds.

The language supports a wide range of timing constraints which include the
ability to specify upper and lower bounds as well as precise hard constraints. During
the execution of the specification these constraints are used to check for timing
inconsistencies and conflicts and any such problems are reported.

EXAMPLE 9.1
Part of Automobile Management System

Figure 9.7 shows the state transition diagram for the main control section of an

372 Real-time System Development Methodologies — 2

CALIBRATING
startmile stopmiie
running
START INACTIVE
- deactivate
deactivate activate
deactivate
[braking
startaccn
notto
CRUISING P
stopaccn
resume
startaccn
h brakin
ACCELERATING £ - IDLE
nottop

Figure 9.7 State diagram for the main states of the automobile management system.

automobile management system (this is part of a widely used case study — see Hatley
and Pirbhai, 1988). The specification for this system written in PAISLey is shown
in Figure 9.8.7

9.11 PAISLEY SUMMARY

The major features of the language are:

® Support for both synchronous and asynchronous communication free from
the problems of mutual exclusion.

¢ All computations are encapsulated; the mapping functions can be
considered as black boxes.

® It is possible to execute incomplete specifications and hence rapid
prototyping and incremental development are possible.

PAISLey Summary : 373

wpaisley file for Auto cruise state diagram”

WIhis file containg the Finite State Machine for the auto
cruise control. It consists of a number of states and 2 set
of ruies for moving between them, "

"A full range of driver command channels are taken by this
process and used for reading the drivers command. They are
read using the xr exchange function, so that we can pick up
one command frommore than cne channel. Very similar to a
multipiexor.”

"The channels are;

running - Driver switches on the system

startmile - Start measured mile command

stopmite - Stop measured mile command

deactivate - deactivate the cruise control

activate — activate the cruise control

nottop - Not in top gear signat - inverted topgear signal
startaccn - start accelerating

stopaccn - stop accelerating

braking - Briver is braking

rasume - Resume cruise control cammand

"

“The order in which these channels are read is important. If
the driver issues "braking® and also ‘startaccn' then
obviously 'braking® has to have priority.”
state-machine: CRUISE-STATE --> CRUISE-STATE;

"Eind out what state we're inand gooff and see if¥ there is
a change of state.”

state-machinel{state] =

!

equall(state, "START')]: update-start,
equall((state, ‘INACTIVE')]: update-inactive,
equal{{state, 'CALIBRATING')]: update-calibrating,
equall(state, 'CRUISING')]: update-cruising,
equall(state, VACCELERATING')): update-accelerating,
equal{(state, 'IDLE')]: update-idle,

True: state “Really an error'

/5

"Start state mapping"

update-start: --> CRUISE-STATE;

update-start =

!

wordered by safety critical impertance”
equat{(xr-running {Nulll,true)) : "INACTIVE',

True : 'START?®

/5

"Inactive state mapping”
update-inactive: -=> CRUISE-STATE;
update-inactive =

/

wgrdered by safety critical importance”
egquall(xr-activate [(Null),Trued):

proj £¢1, ('CRUISING', x-motionstate{*ON"'],
x-select('ON"1D)],

equallixr-startmile INut L), True)d:

proj ({1, ('CALIBRATING', x-measurestatel{'ON"1))],
True

f3

“ltalibrating $tate mapping"
update-calibrating: -~> CRUISE-STATE;
update-calibrating =

/

Figure 9.8 PAIlSLey specification for system shown in Figure 9.7 {continued overieaf).

374 Real-time System Development Methodologies — 2

"Ordered by safety critical importance”
equail(xr-stopmile (Null),Trueyl:
proj ((%, ("INACTIVE', x-measurestatel'0FF'1))],

True : '"CALIBRATING'
/i

"Cruising state mapping"
update-cruising: --> CRUISE-STATE;
update~cruising =

i

"Ordered by safety critical importance®
equall{xr-braking [Nulil,Truedl: "I1pLE",
equall(xr-nottop [Nulll,True)]:'IDLE",
equaili{xr-deactivate [Nulll,True)]:

proj {01, (“INACTIVE", x-motionstatel'OFF']))1,
equall(xr-startaccn [Nulll, Trued)]: "ACCELERATING',

True

proj [C1, C'CRUISING', x-maintainv('ON']}))
/3

"Accelerating state mapping"
update-accelerating: ~=> CRUISE-STATE;
update-accelerating =

/

“Ordered by safety critical importance"
equall(xr-braking [Null),True)]: 'IDLE"Y,
equall{xr-nottop [Nulll,True)): "IDLE",
equal{(xr-staopacecn [Nulbll,True)l:

projl{1, ('CRUISING',

x-select('ON"1))1,
equall{xr-deactivatalNulll, True)]: "INACTIVE',
True)

proj [{1, ('ACCELERATING', x-maintainv['ON'1)}]
/3

"ldle state mapping”

update-idle: ~-> CRUTSE-STATE:

update-idle =

/

"Ordered by safety critical importance"
equal{(xr-braking {Mulll),True)l: "1oLE",
equall{xr-nottop [Null},True)]: *TDLE',
equall{xr-deactivate [Nulll,True)]: "INACTIVE",
equall(xr-startacen [Null),True)l: 'ACCELERATING',
equat{{xr-resume [Null),Truell:

proj {(1, ("CRUISING',

x-select['ON"],

x-select{'ON"])2],

True : 'IDLE®

f3

Figure 9.8 continued

® Interprocess communication is precisely defined using exchange functions
which hide problems of mutual exclusion and which can be used to simulate
timing constraints on communication links.

® Both hard and soft timing constraints can be specified and these constraints
are automatically checked for violation when the specification is executed.

® Bounded resource usage can be guaranteed.

The major weaknesses of PAISLey are largely those that are common to many
approaches to formal specification, namely that for all but the simplest systems the
specification becomes long and cumbersome, making it difficult to read and follow.
To deal with this problem specifications can be broken down into segments which

Summary 375

Environment Process control system
objects structures
Controlled Reader .
object Monitor
R Informer
Vo Modifier
device Handier

e [[N
O
process D
diagrams <> v

Figure 9.9 Graphical notation for PAISLey processes.

can be held in separate files. There has also been an attempt to add to PAIlISLey a
graphical representation (see Figure 9.9) but unlike MASCOT there is no exact
relationship between the graphical representations and the textual representation.

The other weakness of PAISLey is that the system is not available in a fully
developed form in the sense that it lacks the good user interfaces that now
characterise the majority of the CASE tools. A particular problem is that the output
from the interpreter is in simple textual form which is difficult to analyse.

9.12 SUMMARY

In this chapter we have briefly examined two methods for dealing with real-time
systems. MASCOT provides a well-established methodology which assumes that a
limited set of basic elements are all that are required to implement the system. The
additions that have been made to MASCOT 3 are such as to support an object-
oriented approach to system design. A criticism of the method is that the timing
requirements are not visible on the design documents and in fact the designer
proceeds without direct reference to them. As MASCOT is not intended for
specification and, as we have seen, it is difficult to make any use of the timing
constraints until the realisation of the implementation, this is not a serious
restriction on the use of MASCOT.

PAISLey is much less well developed and known than MASCOT. Its main
interest lies in the attempt to support the specification of real-time systems using a
formal language in which the timing constraints can be easily expressed. The other
interesting feature is that the specification can be executed. It is a pity that the
output from the execution is so difficult to interpret. What is required is full
animation support.

10

Design Analysis

10.17 INTRODUCTION

The development methodologies considered in Chapters 8 and 9, with the exception
of PAISLey, do not provide any means of analysing the design cither to compare
designs or to evaluate the implementation requirements. A weakness of both the
Ward and Mellor and the Hatley and Pirbhai methods which we noted is that in
allocating resources as part of the design process one really needs to be able to assess
whether a feasible schedule, that is a schedule that meets the time constraints, exists
for a particular design structure. Similarly both methods make extensive use of state
transition diagrams in specifying and designing the control structure of the system.
A method of analysing such diagrams to reveal unreachable states and/or
undesirable states that are reachable would be useful. Ward and Mellor suggested
that Petri nets might be used to analyse the essential model and hence in the next
section we will look at Petri nets and their use.

10.2 PETR) NETS

Petri nets have been widely adopted as a method for modelling and analysing
systems that can be described in terms of a set of states and a set of events. An event
change results in a change from one state of the system to another state. Also, a °
change of state results in a change in the event set. The technique was originally
proposed by Carl Adam Petri in 1962 as a basis for modelling computer systems
with asynchronous communication between asynchronous components. It has
since been used to model business systems, hardware systems and manufac-
turing systems. A full treatment of the technique is given in the book by Peterson
(1981) which is recommended as a starting point for an in-depth study of the
technique. An extensive bibliography on Petri nets can be found in the book by
Reisig (1982),

376

Petri Nets 377

10.2.1 Basic ldeas

A Petri net is used to model a system on the basis of two properties:

1. Condition: a Boolean description of the state of the system; a condition
may be true or false.
2. Event: an action that depends on the state of the system.

The system model is represented by a set of conditions and a set of events. In the
Petri net notation a condition is represented by a place and an event by a transition.
In the graphical representation of a Petri net a place is drawn as a circle and a
transition as a bar as is shown in Figure 10.1. Places and transitions are connected
by arrows.

Referring to Figure 10.1, place p: is an input place for transition ¢ and an
output place for transition ¢;; whereas place pz is an input place for transition /; and
an output place for transition 7. Input places represent the necessary conditions for
an event represented by a transition to occur and are referred to as preconditions.

Figure 10.1 Graph representation of a Petri net.

Standby
Bunker Time delay
not full S
conveyor off
Start
conveyor on
Conveyor and Conveyor : Emptying
feeder halted running conveyor

Time delay

feeder on

Bunker full Stop

feeder off

conveyor and
feeder off

Feeder and conveyor
running

Figure 10.2 State transition diagram for a coal clearance system.

378 Design Analysis

Output places represent the set of conditions that result from a transition and are
called posiconditions.

Given that Petri nets are used to model conditions and events there is obviously
a similarity between state transition diagrams and Petri nets. For example, the STD
shown in Figure 10.2 can be represented by the Petri net shown in Figure 10.3. A
major difference arises from the idea of executing a Petri net. Dots are placed in

Bunker not full Time delay

Start pressed

P2
Pd
: Conveyor
C opvcyor on
+ feeder
off

Time delay

P5

Empty
conveyor

T3 T4

yd

Bunker full Stop pressed

Figure 10.3 Coal clearance system equivaient Petri net.

Initial marking = {1,0,1,0|

Figure 10.4 A marked Petri net.

Petri Nets 379

the circles representing places for which the conditions of a place are known to be
true. The dots are referred to as rokens. A distribution of tokens is known as a
marking of the Petri net. A marked Petri net is shown in Figure 10.4. The marking
can be represented as (1, 0, 1, 0) with each number representing the number of
tokens present in places p to pa respectively. A place can contain several tokens and
hence can represent a queue — for example, a buffer holding several messages or a
queue of parts awaiting processing. If the number of tokens at a place is large then
instead of using dots a number is written in the place. Figure 10.5 shows a Petri net
with multiple tokens; the marking is (10, 1, 20, 0).

Executing a marked Petri net causes the number and positions of the tokens to
change. The rules for executing a Petri net are:

1. a transition is enabled if ail its input places contain at least one token;

2. any enabled transition may fire;

3. firing of a transition results in one token being removed from each of its
input places, and being deposited at each of its output places; and

4. execution halts when there are no enabled transitions.

Each time a transition fires the marking of the Petri net will change (usually). For
example, consider the Petri net shown in Figure 10.4 where transition f4 is enabled
since it has one input place p; and this place contains a token. The effect of firing
t4 is to change the marking to (1, 0, 0, 1) as shown in Figure 10.6.

! 5] 4

2 P2 m I

P4

Figure 10.5 A marked Petri net with multiple tokens.

i1 "

I Fehl f2 D2 I P3 la

Figure 10.6 Executing a Petri net — stage 1.

380 Design Analysis

N wd 2 P2 f3 F 4] fa

Pa

Figure 10.7 Executing a Petri net — stage 2.

Now transition #; can fire since places p, and p, contain tokens and as a result
of «; firing the marking changes to (0, 1, 0, 0) and the marked net is now as shown
in Figure 10.7.

Note that the firing of 1> has changed the number of tokens in the net from two
to one. This is because there are two input arrows to 1, but only one output arrow,

In general the firing of a transition will result in a change in both the marking
of a net and the number of tokens in the net. The number of tokens at an input place
can never become negative since a transition can fire only if each of its input places
contains at least one token. It is possible to model a system using a Petri net such
that the total number of tokens in the net is kept constant. Such a model would be
required if each token was being used to represent an object flowing through the
system.

If several transitions are enabled then the order of firing is non-deterministic.
When anaiysing a Petri net each possible order of firing must be considered, Use
of this property enables us to use Petri nets to model systems which have concurrent
events that do not have a unique ordering. You should note, however, that if the
system being modelled does, in some way, guarantee precedence to certain events
this must be explicitly modelled in the Petri net.

10.2.2 Modeling Mutual Exclusion

As an example of using Petri nets to model concurrent events let us consider the
mutual exclusion problem. Consider two tasks TA and TB that share a resource R.
The resource is protected by a semaphore SR. Assume that the tasks can be split into
segments TA1, TA2, TA3, TB1, TB2 and TB3 where TA2 and TB2 represent the
critical sections of each task respectively.

If we model each task segment as a place and the transition from one segment
to the next as a transition (an event) we get the two independent Petri nets shown
in Figure 10.8a. The presence of a token in a place will be used to indicate that a
particular segment is active because there is an agreement between the task designers
to insert code in each task that checks with the semaphore SR (for example, by
executing a SECURE (SR) statement) before proceeding to segment TA2 or TB2:
the conditions for the event represented by EA1 to occur are that TA should be at

Petri Nets 381

-

Figure 10.8a Mutual exclusion example — stage

Figure 10.8b Mutual exclusion example — stage 2.

382 Design Analysis

Figure 10.8c Mutual exclusion example — stage 3.

the end of segment TA1 and that SR should indicate that the resource is free, We
can represent the semaphore by a place and the condition that the resource is free
by the presence of a token in the place. This is shown in Figure 10.8b. The presence
of a token in TA1 or TB1 would now cause either EA1 or EBI to fire, thus
removing the token from SR and cither TA1 or TB1 and putting a token in either
TA2 or TB2.

We complete the model by considering what happens when segment TA2 or TB2
completes. At the end of the critical section the task executes a RELEASE (SR) and
thus we need to return a token to SR and the task then continues to execute the next
segment. Hence we need to add arrows from E£A2 and EB2 to SR as is shown in
Figure 10.8¢.

To exccute the Petri net model we need to make an assumption about the initial
marking. Let us assume that the initial marking is (1, 0, 0, 1, 0, 0, 1} as shown in
Figure 10.9a. With this marking either transition ¢, or 74 will fire — which fires is non-
deterministic. Let us assume that ¢, fires; the net marking now becomes (0, 1, 0, I,
0, 0, 0} as shown in Figure 10.9b, since the 1oken is removed from p and from p.
Examining Figure 10.9b we can see that task TA has entered the critical section TA2
and that task TB is prevented from entering segment TB2 since the conditions for
transition f4 to fire no longer hold. However, 1; can now fire since there is a token
in p>. When #; has fired the net marking becomes (0, 0, 1, 1, 0, 0, 1). The conditions
now exist for 44 and #; to fire.

Petri Nets 383

Figure 10.9a Mutual exclusion and execution — stage 1.

Figure 10.9b Mutual exclusion and execution - stage 2.

384 Design Analysis

Figure 10.9c Mutual exclusion and execution — stage 3.

In following the execution stages in Figures 10.9a, 10.9b and 10.9¢ you should
have noticed that once a token reaches p; the transition ¢; is enabled and can thus
fire. The implication of this is that the Petri net does not model the timing of the
two tasks since execution of the task segment TA2 will take a finite length of time.
The model we really require is one in which the timing of #, indicates the start of
execution of segment PA2, and the presence of a token in p, indicates that TA2 is
being executed. The condition for the firing of ¢, is that TA2 has finished executing.
In order to produce such a model we need to use an extended form of the Petri net
notation — the timed Petri net.

10.3 ANALYSING PETRI NETS

Although it is possible to obtain some information about the behaviour of a system
modelled by a Petri net by executing the net either by hand or by using a computer
simulation the number of possible sequences is such that the procedure is laborious
and the information obtained uncertain for all except the most simple nets. Formal
methods of analysis are required and these are based on set theory formulations.

A Petri net structure C can be represented as the four-tuple C=(P, T, I, O)
where P= [Py, Py,..., P.}, the set of places; T=1{T,, Ts,..., Tal, the set of
transitions; /is an input function that maps each transition to its set of input places;

Analysing Petri Nets 385

and O is an output function that maps each transition to its set of output places.
Thus the Petri net shown in Figure 10.9a can be represented as:

C=(P, T, 10)

P=1{pi, p2, D3, Pa, Ps, Pe, P7)
T=1{t1, t2, 13, ta, Is, Lo}

I(t)) = {p1, p7) OW) = {p2]
(1) = [p2} O(t2) = {p3, p7i}
I(ts) = | ps} o) = (]
I{(ta) = {pa, P2} Olta) = 1ps)
f(ts) = {ps] O(ts) = (ps, p7)
It} = { s} O(te) = [p4]}

In analysing a Petri net model of a concurrent system we are concerned with
obtaining answers to questions concerning:

safeness;
boundedness;
conservation;
equivalence;
reachability;
coverability; and
liveness.

Safeness: A Petri net is said to be safe if all the places in the net are safe. A
place is said to be safe if the number of tokens in the place is either 0 or 1.
For example, if we were using the net shown in Figure 10.9¢ to find out
whether we could use a binary semaphore to implement the mutual exclusion
condition we would want to know if place p; was ‘safe’.

Boundedness: A Petri net is said to be bounded if all the places are bounded.
A place is bounded if the number of tokens in it can never exceed some finite
integer value N. If a place is bounded then the physical element that it models
can be realised using a finite storage device.

Conservation: A Petri net is said to be conservative if the number of tokens in
the net remains constant, that is tokens are neither created nor destroyed
when a transition fires. Strict conservation implies that for each transition the
number of input places must match the number of output places. The mutual
exclusion model is not conservative since the firing of transition destroys
a token and the firing of 72 creates a token. Testing strictly for conservation
is important in Petri nets where tokens are used to represent objects moving
around a closed system; or where tokens represent resources available to the
system.

Equivalence: For two Petri nets to be said to be equivalent all possible
behaviours must be equivalent. Establishing equivalence is difficult since each
net has to be analysed for reachability, coverability and firing sequence. The

I

386 Design Analysis

equivalence property can be used to show that a given Petri net is a subset
of another net. Its main use is in trying to optimise a system by removing
redundant elements.

Reachability: Reachability is a basic property of a Petri net. It is concerned with
answering the question: given an initial marking can a specified marking
occur? The specified marking may be a desirable marking or it may be an
undesirable marking (for example, a dangerous fault condition). In the
mutual exclusion example (Figure 10.9a, b and ¢) we want an answer to the
question: can any marking containing both p; and ps be reached from any
initial marking?

Coverability: Coverability is the problem of determining if, given an initial
state, there is a reachable marking that contains a particular marking subset.
For example, in the mutual exclusion model we would like to know if it is
possible to have simultaneously tokens in places p: and ps, that is, are there
any reachable markings that contain the subset {p, =1, ps=1]7

Liveness: A Petri net is said to be five if every transition can be enabled.
Conversely a Petri net is deadlocked it one or more transitions cannot be
enabled.

The two basic techniques for analysing Petri nets in order to seek answers to
the above questions are:

® reachability trees; and
® maltrix equations.

10.3.1 Reachability Tree

The basis of this method is: starting from an initial marking all reachable markings
are found; then starting from each of these markings the réachable markings are
found, etc. Figure 10.10 shows the reachability tree for the mutual exclusion net.
The branches of the reachability tree are stopped either because with the marking
of the net no further transition can be enabled or because the marking is equivaient
to some other marking in the tree. For example, if we follow the transition firing
path 71, £, 3 we reach a marking equivalent to the initial marking. Visual
examination of the tree enables us to conclude that the net is safe — all the markings
contain only the values 0 or 1 ~ and that there is no marking with tokens in both
places p> and ps.

The reachability tree also shows that the net possesses liveness since there is no
leaf of the tree with a marking from which there is no transition. This in fact shows
the net is free from deadlock: for a strict proof of liveness we have to show that
the initial marking is reachable from all leaves of the tree. If a branch of the tree
leads to an endless loop where one particular firing sequence repeats to the exclusion
of all other firings then the system is fivetocked.

Scheduling 387

// S
e \
Ra? (1,0,0,1,0,0, 1)
I/ In I
i
1)
v, (0.1.0.1,0,0,0 (4,0,0,0,1,0,0
lta lh
0,0,1,1,0,0, 1) (1,0,0,0,0,1. 1) f
1"4 {3
AN
0,0,1,0,1,0,0) 0,1,0,0,0,1,0)

0,0,1.6,0,1. 1}

Figure 10.10 Reachability tree for mutual exclusion example.

10.4 SCHEDULING

The end point of most current real-time system development methodologies is an
implementation model of the system that consists of a set of independently
schedulable actions (asynchronous process) and a set of constraints (time, mutual
exclusion and synchronisation). The methodologies then propose that realisation
should proceed by first determining what processing elements are needed {analog
circuits, general purpose digital processors, special digital processors, etc.) and by
allocating groups of actions to processors. The second stage is to determine for
groups of actions allocated to a general purpose digital computer which actions shall
remain as independent schedulable processes and which shall be combined to form
a single schedulable process.

The methodologies give no guidance on how these two stages should be carried
out and on how decisions can be made on a rational basis.

Stated in general terms the problem is:

Given a set of processes
P= [pl! Doy pl’!]

how can a set of processors
U= {u,, Uz, 00 vy u,,,]

388 Design Analysis

and process allocations

V=1(pe, 1), (Py, b2}y oo Py, Um))

be chosen so that the set of constraints

C= {(‘1, Cz, oo ey (‘p;

on the system can be satisfied and that U/ and ¥ are in some sense optimal?

An associated problem is:
Given P, U, 1" can we prove that constraints € are satisfied?

{Note that if the problem is extended to consider fault tolerance then U and V are
not hxed. Also, in general the existence of a fault may result in a change to C.)
The constraints that have to be satisfied can involve:

e lime;
¢ mutual exclusion; and
e precedence,

The most commeon form of time constraint is a dead/ine, that is the time by which
the execution of a task must be completed, and it may be a hard or a soft constraint
(sce Chapter 1). Typical terms used when discussing task timing are as shown in
Figure 1011, which assumes that a task may be interrupted and hence executed in
segments. The total execution time is the sum of the segment execution times plus
any overheads involved in context switching. In general with a pre-emptive task
scheduler we do not know how many segments a task will be split into and it will
vary from task invocation to invocation. Some tasks may have a constraint on the
start time as well as a deadline.

Segment executing

C, = execution time interval for segment §

n
Task total exccution time = Y. €,

(=t

Task
%1 t % f
. Ll
.E o g
= w
o £ E| &
g = = =
o 3 =zl =
o 7 =] a
1 1 I 1 1 | .

Time

Figure 10.11 Task timing notation.

On-tine Scheduling 389

The mutual exclusion constraint arises when tasks share resources and hence
task A {or a segment of task A4) may not be able to run while task B {or a segment
of task B) is using a particular resource. The precedence constraint arises because
one task may need information generated by another task. For example, if task C
(or a segment of C) requires a value produced by task D {or a segment of D) then
there is no point in scheduling D to run before C (or the segment of D to run before
the segment of C).

10.5 GENERAL APPROACHES TO THE SCHEDULING PROBLEM

There are two general approaches:

1. Run-time {on-line scheduling): this is the real-time scheduling (control)
problem — can we design a scheduling aigorithm (or algorithms} that will
allocate resources (including time resources) such that the system meets its
constraints?

2. Pre-run-time scheduling: this is the design problem — ¢an we choose a set
of resources such that a task execution schedule can be constructed that
satisfies the constraints? Additional problems are: can we prove that the
system does satisfy the constraints; can we choose a minimal set of
resources?

The traditional approach to real-time systems has been to use an on-line scheduler.
However, in recent years there has been an increased interest in the pre-run-time
scheduling approach for systems in which all time constraints are hard. The
difficulty with it is that any design change or, during run-time, the loss of a resource
hecause of failure of part of the system means that a new schedule has to be found
and implemented. The approach also requires systems to be designed on the basis
of worst case conditions: upper bounds on execution time and communication
delays, and maximum frequency of occurrence for e¢vents; hence there is
overprovision of resources.

10.6 ON-LINE SCHEDULING — INDEPENDENT TASKS

The on-line scheduling approach divides into two sections:

1. assessment of schedulability; and
2. choice of scheduling algorithm.

The first of these is concerned with finding out whether there are sufficient resources
allocated to the system for a feasible schedule to exist. The necessary and sufficient
conditions for showing in general that a schedule that meets the constraints exists

390 Design Analysis

are not known. Under certain restrictions and preconditions it is possible to check
if a feasible schedule might exist.

Even if it is shown that a feasible schedule exists it does not mean that in
practice all the time constraints will be met; this depends on how effective the
scheduling algorithm being used by the operating system is in utilising the resources,
or how well it is matched to the particular requirements.

10.6.1 Schedulability

The first requirement for carrying out a schedulability analysis is to determine or
estimate the execution time for each task in the system. Given that execution times
are not necessarily constant we need two estimates:

1. average execution time; and
2. worst case execution time.

We can get reasonable estimates for execution times only if certain restrictions have
becn applied when coding the system. For example, use of the following must be
avoided:

® dynamic creation of tasks:
® dynamic allocation of memory; and
® recursion.

Also the following restrictions must be applied:

e all loops must have upper bounds (periodic tasks which are written as
infinite loops are permitted):

¢ all intertask communications must have time outs; and

¢ all external communications must have time outs.

Note that these restrictions apply even if the execution times are being estimated by
running the software, because without them the system will be non-deterministic.
Once a set of execution times for each task has been determined we can calculate

Table 10.1 Utilisation time for cyclic processes

Task Cycle Execution Utilisation
time s} time (s) %)
ReadInputs 0.1 0.02 20
CalculateControl 0.2 0.08 40
UpdateDisplay . 50 0.30 6
SendTeActuator 0.2 0.005 2.5

Total utilisation 68.5

On-line Scheduling 391

the processor utilisation time. This is easily determined for a cyclic (periodic) task.
For example, if the cycle period is 0.1s, and the execution time is 0.02s, the
processor utilisation is (0.02/0.1) x 100%, that is 20%. Thus if we have a set of tasks
which run on a single processor with cycle times and execution times as shown in
Table 10.1 we can easily determine how much processor time they utilise.

Liu and Layland (1973) proved that for a single-processor system running a set
of n independent periodic tasks with constraints consisting only of deadlines on time
of the end of execution (that is, the task can be started at any time) a feasible
schedule exists if processor utilisation satisfies the condition

’n

> eife, €Y -1

iz
and a rate monotonic scheduling algorithm is used. This algorithm always chooses
the highest-priority task. Task priority is ordered according to the cycle time of the
tasks, the highest priority being given to the task with the smallest cycle time. For
a large value of n this approaches 0.693; hence we can conclude that if the processor
utilisation is less than 69% all sets of tasks are schedulable.

One must not conclude from this that sets of tasks with process utilisation
greater than 69% cannot be scheduled. For example, task set 1 shown in Table 10.2
with 100% utilisation is schedulable (under the conditions given above) whereas the
task set 2 given in Table 10.3 is not (Burns and Wellings, 1990, pp. 347-9). In order

Table 10.2 Task set 1 — utilisation 100%

Task Cycle Execution Utilisation
time (ms) tirme (ms) %)

P 80 40 50

P, 40 10 25

P 20 5 25

Total utilisation 100

Table 10.3 Task set 2 — utilisation 82%

Task Cycle Execution Utitisation
tirme (msj time (ms) (%)

P 50 12 24

P, 40 10 25

P 30 10 33

Total utilisation 82

392 Design Analysis

to meet the deadlines, task set 1 must be run on a processor with a pre-emptive
priority scheduler and the task priorities must be ordered from highest to lowest as
follows: P3, P, Pi. The task activation diagram for task set 1 is shown in Figure
10.12. From this diagram it can be clearly seen that without a priority scheduler P,
and P; would not be able to meet their deadlines. It should also be clear that the
start of P; is not accurately synchronised with real time; it will always run with a
15 ms offset, and similarly P; will always run with a 5 ms offset from its nominal
start time.

Determining schedulability becomes more difficult when there are event-driven
tasks in the system. Events are aperiodic and, because there is always a non-zero
probability that an event will occur within a given time interval of a previous event
regardiess of how small that interval is, it is not possible to carry out a worst case
analysis. However, by considering the particular application, we can usually set a
minimum time interval between two occurrences of a given event. Events
constrained in such a way are referred to as being sporadic. A worst case analysis
can now be carried out by converting sporadic events into periodic events. We do
this by taking the minimum time interval between successive occurrences of the
event as the cycle time for the task that responds to the event. For example, consider
the addition of a task CheckAlarms, which has to respond within 0.15 seconds of
an event, to the set given in Table 10.1. We will assume that the response interval
is the minimum interval between successive occurrences of the event and hence the
cycle time for CheckAlarms is 0.15 seconds, and if we assume the execution time

Total execution time = 40
5 15 5 15
P L
10 10
P, v
5 5 5\ 5 5 5

P24 %,

i) 8O 100 120 140 160

Time

Figure 10.12 Task activation diagram.

On-line Scheduling 393

is 0.01 seconds then the processor utilisation is 6.7%, taking the total utilisation to
75.2%.

Using the worst case analysis for sporadic tasks can lead to considerable
overestimates of the processor utilisation and hence lead to low actual utilisation.
The reason is easy to see — the average rate of event occurrences is likely to be much
lower than the potential maximum rates.

Burns and Wellings (1990, p. 348) suggest as a guideline for assessing
schedulability that the following conditions should be satisfied:

1. All tasks should be schedulable using average execution times.
3. All tasks with hard time constraints should be schedulable using worst case
execution times.

A consequence of condition 1 is that there may be occasions when all tasks cannot
meet their deadlines — this is referred to as transient overioad — but if condition 2
is satisfied even under these conditions the tasks with hard time constraints will meet
those constraints.

An analysis of processor utilisation can be useful when trying to determine the
allocation of tasks in a system. In terms of simplicity of understanding, and of
implementation, there are advantages in having only a small number of tasks. This
may mean that some actions are performed more frequently than absolutely
necessary, thus increasing total processor utilisation. However, if the set of tasks is
still schedulable then such a task allocation can be adopted.

Examining Table 10.1 we can easily see that by combining tasks
CalculateControl and SendToActuator we do not significantly change the processor
utilisation since both tasks have the same cycle time (there will be a small saving in
context switching time). But suppose we also try to combine them with ReadInputs
and run all three at the cycle time of ReadInputs. The combined task has an
execution time of 0.105 seconds (minus some aliowance for reduced context
switching) and a cycle time of 0.1 seconds and hence it is immediately clear that we
cannot use this combination (the processor utilisation is 105%).

Let us consider the position when we add in the task CheckAlarms and let us
assume that we decide to run it in combination with Readlnputs, that is at 0.1
second intervals rather than 0.15 second intervals. The utilisation calculation is
shown in Table 10.4.

10.6.2 Scheduling Algorithms — Pre-emptive, Priority Based

We discussed some scheduling algorithms in Chapter 6 when we dealt with operating
systems. In particular we assumed that for real-time applications the scheduler
would use a priority-based pre-emptive algorithm. This is the simplest and most
commonly used real-time scheduler. The scheduler always selects the task with the
highest priority from the set of tasks that are ready to run.

394 Design Analysis

Table 10.4 Effect of combining tasks on utilisation

Task Cycle Execution Utifisation
time {s) time (s) %)

ReadInputs 0.1 0.03 0

Check Alarms

CalculateControl 0.2 (.085 42.5

SendToActuator

UpdateDisplay 5.0 0.30 6

Total utilisation ' 78.5

By examining Figure 10.12 which was drawn on the assumption that .a pre-
emptive priority scheduler was being used, we can see that the algorithm guarantees
that the highest-priority task is always run on time. This is the only assertion that
we can make about this algorithm. The behaviour of a system which uses this
scheduling technique is dependent on the particular choice of priority structure.
Even then it is non-deterministic since the behaviour will also change according to
the pattern of occurrence of events. A question then'is: how should task priorities
be assigned?

There are two basic approaches:

1. assign priorities according 1o the importance of the task; and
2. assign priorities according to the cycle time of the task with the task with
the shortest cycle time being given the highest priority.

In practice designers use a mixture of the two approaches. Under normal operating
conditions for a control system the tasks with the shortest eyele time will also be the
ones that are the most important and hence in practice the two approaches coincide.
However, under abnormal conditions the importance of some control loops may be
downgraded compared to others. Hence a designer may choose a fixed order of
priorities that also takes into account the requirements of abnormal running and
hence departs from strict compliance with approach number 2 (alternatively the
designer may choose to use dynamic priority reallocation and change to a different
'set of priorities during abnormal running conditions).

10.6.3 Scheduling Algorithms — Other Types

The two other, most commonly advocated scheduling algorithms are:

1. earliest deadline; and
2. least slack time.

To implement cither of them the scheduler needs to know the deadline for each task.

Pre-run-time Scheduling 395

.The earliest deadline scheduler, as its name implies, simply chooses the task
whose deadline is closest to the current time. Be aware that it chooses from the list
of tasks that are ready to run, that is those tasks whose release time is earlier than
the current time.

A least slack time scheduler needs to know, in addition to the deadline for each
task, the amount of processor time that the task needs in order to complete its
execution. Using these values the scheduler calculates which task has the least free
or slack time before its deadline.

Little advantage over the priority-based scheduler is obtained from using these
algorithms for systems which comprise mainly periodic tasks. However, they
perform significantly better for systems with mainly aperiodic tasks as they do not
involve the use of any prior assumptions on the rates of occurrence of the events.

The major weakness of the algorithms is that they operate only on the current
state of the system and do not look ahead; hence under transient overload
conditions decisions may be made in a non-optimum way.

10.7 PRE-RUN-TIME SCHEDULING

For control applications and in some other forms of hard real-time systems there
is frequently a requirement for a task to run at exactly T second intervals. This is
a constraint that applies to the control algorithms described in Chapter 4. The on-
line schedulers described above seek a schedule that ensures that a periodic task runs
once per time interval. For example, the priority-based scheduler can ensure that one
task, that given the highest priority, will tun at exactly T second intervals but no
other. For small, hard real-time systems a method which is frequently used to
provide precise scheduling for the critical tasks is to build into the scheduler a
precalculated schedute.

One method of doing this is to construct a table with the number of columns
equal to the number of tasks to be scheduled and the number of rows equal to the
lowest common multiple of the task cycle intervals. (The size of the table can be
reduced if the cycle intervals are expressed in terms of their greatest common
factor.) Each time the scheduler runs it first checks if it is time to read the table,
and if it is it reads the appropriate row. It selects those tasks for which the entry
in that row is a ‘1’ and runs them. The scheduler uses a counter to keep track of
which row it is to read and the counter is reset when all the rows
have been read and the sequence restarts. Depending on the ratio between the basic
clock tick and the GCF of the cycle times for the task, the scheduler may check the
table each time it is entered or only at some multipie of the basic tick.

For example, consider a system with four tasks A, B, C and D with cycle times
of 4, 5, 10 and 15 ms respectively. The GCF is 1 and the LCM is 20; hence we need
a table with 20 rows as shown in Table 10.5.

As will be seen from the table the approach does not guarantee exact cycle times
at every task invocation since in row 16 we find that two tasks A and B are scheduled

396 . Design Analysis

Table 10.5 Task scheduling table

A B C o
0] 0 U] 0
| 0 I 0 0
2 0 0 1 0
3 0 0 0 |
4 1 0 0 0
5 0 0 0 0
6 0 1 0 0
7 0 0 Q 0
8 | (0 0 0
9 0 0 0 0
10 0 0 ¢ 0
11 0 1 0 0
12 | (] 1 0
13 0 0 0 0
I4 0 0 0 U]
15 0 0 0 0
16 1 1 0 0
17 0 0 0 0
18 0 0 0 0
19 0. 0 (} 0

to run at the same time and this occurrence will occur on every fifth invocation of
task A and fourth invocation of task B. By using smaller scheduling time intervals
and a much larger table it is possible 10 reduce the frequency at which tasks coincide
but not to eliminate it entirely.

10.8 SCHEDULING — INCLUDING TASK SYNCHRONISATION

So far we have assumed that all the tasks are independent, that is there are no
mutual exclusion or precedence relationships between the tasks. Of course in general
this is not the case. Introducing these constraints increases the complexity of the
problem greatly and methods for determining predictable schedules for a hard time
constraint, real-time system with task synchronisation are the subject of much
research. There are serious doubts about the use of on-line scheduling for hard time
constraint systems and most work is being done on pre-run-time scheduling. The
main techniques that are being used are:

1. Model-based techniques, for example Petri net models.
2. Temporal logic and extended states machines.

Summary 397

3. Algorithmic techniques (Xu and Parnas, 1990; Shepard, 1991).

One interesting approach that effectively avoids the scheduling problem is to divide
each task into small segments for which the execution times are roughly equal
{within an order of magnitude). Critical sections of code must not be split, ali
intertask communication must be by messages and all synchronisations between
tasks must have time-out conditions attached. The segments are prioritised, usually
in groups, and the scheduler simply executes the segments in order. That is, it looks
at the highest-priority group and executes any segments that are waiting; if there are
none it then looks at the next priority level and so on. No event-based tasks are
permitted; they are turned into periodic tasks which are used to poll the source of
the event. Because there is no pre-emption, each segment, once it starts, runs to
completion. The behaviour of the system is predictable (on a worst case basis since
the execution time of some tasks will depend on the value of inputs to those tasks).

10.9 SUMMARY

A major weakness of all the system development methodologies that we have
examined is the lack of analysis tools. Without such tools the system designer has
no means of evaluating design decisions. Resource allocation — which includes
partitioning into tasks and scheduling decisions — is obviously a vital area for hard
real-time systems. It is no use deciding on a particular task allocation if the resulting
task set cannot be scheduled in a way that meets the time constraints.

In this chapter we have briefly examined some of the approaches to modelling
and analysing systems for the purposes of evaluating design decisions, Some
techniques — processor utilisation, for example — are simple and easily carried out
but the information they offer is limited; other methods are more complex. Methods
for carrying out the analysis of schedulability and evaluating the safeness of systems
are being developed rapidly as are tools to support the methods. Information on
techniques and tools, including simulation tools, can be found in Berryman and
Sommerville (1991), Harel et af. (1990), Liu and Shyamasundar (1990), McCabe
et al. (1985) and Pressman (1992). Such tools will gradually be added to CASE
environments,

The problems become more difficult when distributed systems are used.
Information on such systems can be found in Burns and Wellings (1990) and Levi
and Agrawala (1990).

Some important points to remember are:

@ Petri net models can be used to find out if a system can enter an unsafe state.

e Predictable performance is more important than efficiency in hard systems.

® Processor utilisation calculations give a simple check that can demonstrate
immediately if a system cannot be scheduled. The check does not prove that
it can be scheduled except for a particular limited set of conditions.

398 Design Analysis

EXERCISES

10.1 Draw a Petri net diagram to represent the state transition diagram shown in Figure
9.6.

10.2 Plot a graph showing how the maximum processor usage for schedulability changes
with the number of tasks (#) assuming (.- rate monotonic scheduling algorithm.

10.3 A system comtains four tasks, A, B, C and D. A, C and D are cyclic tasks with
periodic times of 0.2, 3 and 0.5 seconds respectively; and B is an aperiodic task with
a response time of 0.3 seconds. The execution times for A, B, C and D are 0.08, 0.03,
0.9 and 0.03 seconds respectively. Find the free processor time. Can the tasks
be scheduled? What would be the effect of (a) doubling the processor speed; and
{b) halving the processor speed?

